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Lattice Boltzmann Computational Fluid 
Dynamics in Three Dimensions 

Shiyi Chen, 1,2 Zheng Wang,1 Xiaowen Shan, 1,3 and Gary D. Doolen 1 

The recent development of the lattice gas method and its extension to the 
lattice Boltzmann method have provided new computational schemes for fluid 
dynamics. Both methods are fully paralleled and can easily model many dif- 
ferent physical problems, including flows with complicated boundary conditions. 
In this paper, basic principles of a lattice Boltzmann computational method are 
described and applied to several three-dimensional benchmark problems. In 
most previous lattice gas and lattice Boltzmann methods, a face-centered-hyper- 
cubic lattice in four-dimensional space was used to obtain an isotropic stress 
tensor. To conserve computer memory, we develop a model which requires 14 
moving directions instead of the usual 24 directions. Lattice Boltzmann models, 
describing two-phase fluid flows and magnetohydrodynamics, can be developed 
based on this simpler 14-directional lattice. Comparisons between three-dimen- 
sional spectral code results and results using our method are given for simple 
periodic geometries. An important property of the lattice Boltzmann method is 
that simulations for flow in simple and complex geometries have the same speed 
and efficiency, while all other methods, including the spectral method, are 
unable to model complicated geometries efficiently. 

KEY WORDS:  Lattice gas; lattice Boltzmann; three-dimensional flows; 
Turbulence, 

1. INTRODUCTION 

Lattice gas automata (LGA) (1) and the lattice Boltzmann equation 
(LBE) (z'3) have been actively considered as alternative numerical methods 
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for solving the Navier-Stokes equations for several years. These numerical 
methods provide new parallel computational algorithms which can be 
easily programmed on modern parallel computers, including the Connec- 
tion Machine-2. Both the lattice gas and the lattice Boltzmann method 
can simulate fluid flows with complicated geometry and complex physics, 
such as two-phase fluid flOWS, (4-6) flOWS through porous media, (7"8) and 
magnetohydrodynamics. (9.10) 

The lattice Boltzmann equation is an extension of lattice gas automata 
which uses real numbers instead of bits to represent particle distributions. 
In the lattice Boltzmann equation, a set of kinetic equations are solved in 
discrete space and discrete time. The lattice Boltzmann method is a finite- 
difference technique for solving the kinetic equation. The Navier-Stokes 
equation is obtained automatically in the long-wavelength and low- 
frequency limit. One crucial feature of the continuum description of the 
LBE method compared with original lattice gas models is that the LBE 
eliminates most of the noise of the system compared with the lattice gas 
method. This fact has been noted by several previous authors. (2,s) In addi- 
tion, the LBE has considerable flexibility in the choice of the local equi- 
librium particle distribution. In contrast, the Fermi-Dirac equilibrium is 
the only distribution usually considered for the lattice gas automata. This 
additional freedom allows us to choose an equilibrium distribution to 
achieve desired physical properties, such as Galilean-invariant convection 
and a velocity-independent equation of state. (11) 

Even though the LBE has been shown (12) to be an efficient numerical 
method for solving two-dimensional fluid problems and is considered to be 
an efficient and accurate numerical method for solving three-dimensional 
fluid problems, there has been no careful comparison with traditional 
numerical methods for two- and three-dimensional flows. The main objec- 
tive of this paper is t o  describe a detailed implementation of the lattice 
Boltzmann method and to demonstrate the validity of the LBE method for 
three-dimensional benchmark problems. We hope to demonstrate the 
advantages and limitations of the LBE for real applications. 

Section 2 is devoted to a review of the basic principles of lattice gas 
automata and the lattice Boltzmann approximation. The traditional lattice 
Boltzmann computational method is described, including the pressure- 
corrected lattice Boltzmann model, which maintains Galilean-invariant 
convection and the equation of state of an ideal gas. (11) Section 3 intro- 
duces a new version of the lattice Boltzmann method which only uses 14 
directions instead of the usual 24 directions. This model is more efficient 
and memory-conserving than earlier models. In Section 4, typical three- 
dimensional fluid flows are simulated, including Beltrami flow, Green- 
Taylor vortex flows, and the decaying flows of three-dimensional isotropic 
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turbulence. Local and global quantities for both the lattice Boltzmann 
method and the spectral method are compared in detail. In the last section, 
a summary and discussion of limitations of the LBE are presented. 

2. LATTICE B O L T Z M A N N  M E T H O D  FOR T W O -  A N D  
T H R E E - D I M E N S I O N A L  FLUID FLOWS 

2.1. Basic Principles of  Lattice Gas Automata  

The basic two-dimensional and three-dimensional lattice gas automata 
models (13'~4) consist of identical particles moving on a regular lattice 
[hexagonal lattice in two dimensions and face-centered-hypercubic lattice 
(FCHC) in three dimensions]. The lattice unit c is unity for two dimen- 
sions and xf2 for three dimensions. All particles have the same mass, 
momentum, and kinetic energy, and they reside only on the lattice vertices. 
There are b different particle momentum states allowed at each lattice site, 
associated with the directions to their nearest neighbors. An exclusion rule 
is usually imposed which requires that no more than one particle at a given 
site can have a given momentum. This exclusion rule is included in order 
to minimize memory requirements. If we use No(x) (a = 1,..., b) to denote 
the particle occupation in state a at site x, then N,  = 0 or 1. There are two 
microscopic updating processes at each discrete time step: advection and 
collision. In the advection process, a particle in state e~ moves from its 
present site to the nearest neighbor site in the direction %. In the collision 
process, particles at each site are redistributed among the b momentum 
states at the same site in such a way that the total particle number 
( b = Z ~ = I  No) and the total momentum ( = Z ~ = I  e~N~) are conserved at 
each site. The microdynamical evolution of the lattice gas system is 
described exactly by the following microscopic equation: 

Na(x + ea, t +  1) = N~(x, t ) + A  a (1) 

where Aa represents the collision operator, which includes the creation or 
annihilation of a particle in momentum state ea and only depends on the 
information at the site x at time t. The collision operator has the form 

Aa= Z (s'- s) P(s-* s') H Nj'(1- N~@ ~ 
s, S" j 

(2) 

where s =  (sl, s2 ..... Sb) and s' represent the local states before and after 
collision. P ( s  ~ s ')  is the transition probability from state s to s'. 
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Particle and momentum conservation are satisfied if ~a  b = 1 Aa = 0 and 
~ba= 1 e a A a  = O. The fluid density and momentum are defined as follows: 

n(x, t)= ~ f~(x, t) 
a 

j(x, t )=nv=~fa(x ,  t)% 
a 

(3) 

where 

f~(x, t ) =  (Na(x, t ) )  

and ( - . . )  denotes an ensemble average. 
If the microscopic collision transition probability P in (2) satisfies the 

semi-detailed balance condition 

Z P(s s') = 1 
s 

one can prove that the collisions will force the system to approach a local 
equilibrium described by the Fermi-Dirac distribution(13): 

1 
f~ - (4) 

1 + exp(~ + flea" v) 

where ~ and fl are Lagrange multipliers determined by mass and momen- 
tum conservation. 

Assuming L >> 1 and T>> 1, where T is the macroscopic characteristic 
time and L is a characteristic length, one obtains from (1) the continuum 
version of the kinetic equation: 

~,f~ + ea 'Vfa  = f2a (5) 

where s'2 is the collision operator obtained by replacing Na by fa in A. After 
ensemble averaging the microscopic equation, and using a Chapman-  
Enskog expansion, it can be shown that the system approximates the 
following fluid equations(1'13): 

0 , n+V- (nv )  = 0  

~,(nv) + V- [ng(n) vv] = -Vp  + vV2(nv) (6) 

p = �89 -g(n)  v 2] 

where g(n) is a function of density which should be unity, but it is not 
unity for lattice gas models. This causes non-Galilean effects to appear. The 
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incompressible Navier-Stokes equations are recovered only in the low- 
Mach-number limit when time, pressure, and viscosity are rescaled by the 
factor g. Because g(n) depends on density, this rescaling is consistent only 
for problems which have nearly constant density. 

2.2. A Pressure-Corrected Lattice Bol tzmann M e t h o d  w i t h  a 
Single-T ime Relaxat ion 

We will describe a pressure-corrected lattice Boltzmann model 
proposed recently by Chen etal. (111 This model approximates the 
Navier-Stokes equations in the long-wavelength and low-frequency limit. 

In general, we consider N-dimensional physical problems on D-dimen- 
sional lattices with b different allowed moving directions and one rest state. 
For two-dimensional flows, D = 2 and b = 6 (hexagonal lattice). For three- 
dimensional flows, D = 4 and b = 24 (the face-centered hypercubic lattice, 
FCHC). The Boltzmann equation for this model is given by 

f~(x+ei, t+ l )= f~ (x , t )+sQi ( f ( x , t ) ) ,  i =  O, I,..., b (7) 

where f2, = f2(f(x, t)) is a local collision operator, f ,  is a single-particle dis- 
tribution function. Jeil = c is the lattice unit length as discussed above. In 
the previous section, we saw that Fermi Dirac statistics are required and 
f,. is restricted to be in a range bounded by zero and one. For the lattice 
Boltzmann method, the particle distribution does not have an upper 
bound in general. To be consistent with particle distribution, we enforce a 
Maxwell-type equilibrium distribution and require that f,/> 0. 

Assuming that this distribution can be expanded about its local 
equilibrium value, 

tfTql f~ = feq + fneq, - - ' ~ 1  (8) 
I feq [ 

the collision operator becomes 

a~+eq) fje q t2~(f) = t2~(ff q ) + + O(I f  "~q 12) 
J j  

(9) 

Chapman-Enskog theory requires ~Qi(feq)=0. Neglecting higher-order 
terms, we have the linearized form of the collision operator: 

t2,(f)  = Mo. f~ ~q 



384 Chen et  aL 

Here, M~j= OQi(feq)/ofj. If we further assume that the local particle dis- 
tribution relaxes to equilibrium state at a single rate, O~i/~fj = - ( l / z ) 6 ~ ,  
with time scale r, (u) we arrive at the following linearized form: 

s = - 1  (f. _ f~q) (10) 

Note that we have both Z i  s = 0 and Zi  e~s = 0. In order for the fluid to 
have Galilean-invariant convection and a pressure which does not depend 
upon velocity, the following equilibrium distribution f e q  is assumed: 

~b D(D + 2) pD f~q=d+ e i ' v + p  2c4b (ei)~,(ei)/su~,u/3-2--~v2 (11) 

P u (12) 
f~q  = do c2 

In the above equations, do is the average particle number. The particle 
density per site p and the fluid velocity v are defined by 

p = ~ f /  and p v = ~  eif/  (13) 
i i 

In (11), 

d = (p - do)/b 

Performing a Taylor expansion in time and space and taking the long- 
wave length and low-frequency limit, we obtain the continuum form of the 
kinetic equation up to second order: 

1 2 c3t(fi)+ei.Vfi+�89 (14) 

The momentum equation can be written as 

0t(pv) + V. H = 0 

with the momentum flux tensor H of the form 

H~b = ~ (ei)~ (ei)b f," 
i 

Using the Chapman-Enskog expansion, one obtains 

Hab = /7(o) -- /7(1) 
~ a b  ~ " ~  a b  

/ 7 ( 1 ) -  ( e l )  a ( e i )  b f n e q .  with the stress tensor ..rr~~ Zi  (ei)a (ei)b f~ q and . .  ab - 
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After simple algebra, one obtains 

bc2d 
H(O) _ puaub + - i f -  6~b ab  - -  

H(,)_ 
c2(2~ " -  1) I~__z c2(2z - 1)] 

ab 2(D + 2) Pgab'q- "~_~-~_]V'(pV)(~ab (15) 

where ?ab is the time-rate-of-strain tensor, defined by 

~ U  a ~ U  b 

Equation (15) can be written as a relation between the stress tensor r and 
the rate-of-strain tensor: 

C2(2r 1 ) 
"cab 2 ( D + 2 )  P~ab+ 2 ~ - f ) "  V' (pv)  Oab (15') 

For incompressible fluids, yy(1) can be written " ~  ab  

H(I)_ 
c 2 ( 2 z - 1 ) .  

ab 2(D + 2) Yah 

and the Navier-Stokes equations become 

6(p)+v. (pv)=0 

6(pv) + V. (pvv) = -Vp  + uv2(pv) 
(16) 

In the above equations, p is the pressure, p = c2p/D, and/z is the shear 
viscosity. The kinematic viscosity v = I~/P can be written simply as 

c2(2"c - 1 ) 
v=vc+VP 2 ( D + 2 )  (17) 

where v c and Vp are the viscosities induced by collisions and propagation, 
respectively. Note that in our present single-relaxation-time model, the 
kinematic viscosity only depends on the relaxation time, not on local 
density. This is a distinct advantage over traditional LBE methods for 
simulating incompressible fluids. 

For most previous simulations in three dimensions both in lattice gas 
and lattice Boltzmann schemes, a 24-moving-direction lattice in four- 
dimensional space (the FCHC lattice) has to be used in order to maintain 
isotropy of the stress tensor required by fluid equations. This lattice has 
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Cartesian coordinates (•  •  (__1,0, •  (+1,0,0,_+1),  
(0, 0, + 1, + 1), (0, _+ 1, 0, + 1), and (0, 0, + 1, _+ 1). The projection of lat- 
tice dynamics into three-dimensional space produces the expected three- 
dimensional fluid flows. In order to save computational memory and 
obtain most efficiency for three-dimensional flows, a periodic condition for 
the lattice length in the fourth dimension is commonly assumed. Therefore, 
this lattice is equivalent to a two-speed lattice in three-dimensional space 

with speeds x/~ and 1. The fourth dimensional coordinate is either 0 or 
+__ 1, respectively. For lattice Boltzmann simulations it is not necessary to 
write out all the moving directions when they have different coordinates in 
the fourth dimensions. The only quantities required are the particle speeds 
in three dimensions. From Eq. (11 ), we see that the particles moving along 
same coordinate in the first three dimensions but with different moving 
direction in the fourth direction have the same equilibrium distributions. 
This is equivalent to doubling the particle distribution along the axes while 
neglecting the fourth dimensional coordinates. Thus the original FCHC 
lattice can be replaced an 18-moving-directional lattice with two speeds. 
This reduction saves about 25% in memory requirements and 25% in 
computer speed. 

3. A NEW LATTICE BOLTZMANN METHOD FOR 
THREE-D IMENSIONAL FLUID FLOWS WITH FOURTEEN 
M O V I N G  DIRECTIONS 

In the previous section, we discussed the relation between FCHC 
model and a lattice Boltzmann model with 18 moving directions. In this 
section, we introduce a new three-dimensional lattice with only 14 particle 
moving directions. We prove that the related lattice Boltzmann method 
approximates the usual three-dimensional hydrodynamic equations. By 
changing from 24 to 14 directions, the method becomes 42% more 
efficient. 

We consider a cubic lattice in three dimensions and choose the new set 
of lattice vectors associated with the moving directions of the particles as 
follows: (+2 ,0 ,0) ,  (0, +2,0) ,  (0,0, _+2), and (_+1, _%+1, _+l). Let us call 
the speed two lattice a class I lattice and the remainder as a class II lattice. 
Using simple group analysis, (14) we write the lattice symmetry properties 

(ea)i (e.)j = c2 ~ 6  U M  (18) 
a 

where c 2 is 4 for the class I and 3 for class II, M is (i for the class I and 
8 for the class II, and D is 3 (dimensions) for both cases. 
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We also have 

(e,)~ (%)j (%)k (%)l = 326~kz 
a 

(%), (%)j (%)k (%)z = 8A,jkt-- 166okl 
a 

for class I 

for class II 

(19) 

where A0~t= ~o.6kl+ 6~k@+ 6itfjk and 60.kz= 1 for i = j = k  = l and 0 for all 
others. 

The kinetic equation (7) can be rewritten as 

~. __feq 
f~(x + ei, t + 1 ) - f i ( x ,  t) = - - ,  i =  O, 1,..., 14 (7') 

z 

We choose the equilibrium distribution function as follows: 

f l l )  eq = d(1)+ ~ ( 1 ) e l l )  . u + c ] l ) ( e i  , v ) 2  _~_ c~I)M2 

f}2) eq = d(2)+ 0~(2)C}2) , u ..}_ C~2)(e i  ~ u  "Jr" C(22)U 2 ( 2 0 )  

f(O) eq = d(O) q_ 71./2 

where the superscripts (1), (2), and (0) refer to the class I, class II, and rest 
particles. From conservation of mass and momentum in (13), we obtain a 
relation between the undetermined coefficients in (20): 

6d (1) + 8d (2) -q- d (~ = n 

8c] 1) '~ 6c(2') + 8c~ 2~ + 8c(22) + 7 = 0 (21) 

8(0~(1) + ~(2)) = n 

Similar to the first equation in (15), we have the zeroth order of the stress 
tensor: 

r~!, ~ = [8(d (1) + d (2)) + 8(c(2 ') + c(22)) u 2 ] 60. 

+ [(32c~ ~ -  16c~ 2~) 6ok,+ 8c]2)A~k,] uku, 

In order to maintain an isotropic stress tensor and an ideal gas equation 
of state, we require that 

3_~ n c] i1= ' c]2~ 16 

48' 24 
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From (21), we have 

For simplicity, we choose 

7 n  

7= 24 

d(1) = �89 = d(O) 

Therefore, we have a simple expression for ~%.-m)'. 

.g(O) - -  2 4 ~ , ~  I Flf~liUj 
/j - -  2 3 ' ~ i j  

The sound speed of this system is (24/23) m. To obtain the Navier-Stokes 
equation, we calculate to first order in the stress tensor: 

F,~C (~ 0f~ ~ 
a z V o ~!~l=Y.(ea)i(e.)jf~a'=,~ . - - ~  (ea),(eo)j --g--+(eo)~ axe] 

If we assume ~(2) = 2c~(1), from the last equation in (22), we obtain 

r /  ~ ( 1 )  = _ _  

24 

~ ( 2 )  = F/ 

12 

The first-order stress tensor has the form 

reg.)= - 2 z  /'anui 8nuj~ 26z f / j r .  (nv) 
3 

Taking into consideration the convective transport coefficients as before in 
(17), we obtain the Navier-Stokes equation for this new model: 

~2nui 8nui + 8nuiuj_ 8p F v ~ + r/ V. (nv) 
8t ~xj ~x~ 8xj �9 

with the kinematic viscosity v=(2z -1 ) /3  and the bulk 
q = 2z/3 - 136/87. 

(22) 

viscosity 

In order to have a correct equation of state, we use a rest particle state 
for the present 14-moving-direction lattice Boltzmann model. It is not 
necessary to keep this rest-particle number state, because of the freedom in 
the equilibrium distribution function in (20). By adjusting the parameter in 
Eqs. (21), one can also obtain a correct fluid equation using 14 moving 
directions only. (15) 
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The lattice we are using now has a particle speed 2 along x, y, z axis 
directions. It could be a unit speed. This requires the particle equilibrium 
distributions in these directions to be eight times bigger than those in the 
diagonal directions in order to have the isotropic property for the stress 
tensor. In order to make the particle distribution in all directions close to 
an isotropic distribution, we prefer to use the speed-two lattice model. The 
speed-two lattice is the preferable model for the periodic problems 
described in the next section. For the problems with arbitrarily complicated 
boundaries, it may be easier to use the speed-one lattice, for which we only 
need to treat one lattice layer as the walls by the bouncing back of 
particles. 

4. THREE-DIMENSIONAL SIMULATIONS WITH 
PERIODIC BOUNDARIES 

In order to test the accuracy and efficiency of the new method, we 
present in this section direct numerical simulation results and compare 
them with results obtained using the spectral method, a very efficient 
method for the periodic boundary conditions. 

4.1. Beltrami Flow and the Measurement of 
Kinematic Viscosity 

Considering the incompressible limit of the lattice Boltzmann model, 
the three-dimensional Navier-Stokes equation in (22) can be written in the 
form 

& + c o x v =  - V  + - vVx co (23) 

where co = V • v is the vorticity. For Beltrami flows, v • co = 0. In periodic 
boundaries, V2(p + u2/2)= 0, and the above equation has an exponentially 
decaying solution: 

~v 
- -  = - v V  x co ( 2 4 )  
8t 

Assume there is a vector potential ~ having the following relation to 
velocity: 

v--Vx0e+~Vx(Vxe~,) 
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One can easily show that co = 2v. Therefore, if we initially assume that 

= sin(2 �9 x) 

we have an exponentially decaying velocity solution for (24): 

v(x, t) = v(x, 0) exp(-2Zvt) (25) 

By measuring the decay rate at any spatial point, one can obtain the 
kinematic viscosity v. By simulating Beltrami flows, a simple check of the 
accuracy of the lattice Boltzmann scheme is that it maintains the required 
V X c o = O .  

This simulation has been done using both the 18-direction lattice 
Boltzmann model and the 14-direction lattice Boltzmann model. But in this 
paper, we will only show the results from the 14-direction model. The 
system size for the simulation was 64 x 64 x 64. In order to see the basic 
property of the Beltrami flow, we have measured the time evolution of 
((vxco)2).  Here ( - - - )  denotes the spatial average. We have obtained 
correctly the basic Baltrami flow property: ( ( v x c o ) 2 ) = 0  throughout 
simulation. 

In Fig. 1 we present the total energy decay as a function of time for 
different values of relaxation time r. We see that the decay for different 
relaxation times satisfies the exponential rule with different decay rates. 
This is exactly described by the decay equation in (25). 

I 0 z'5 

10 2.0 

10 ~.o 

10 ~ ' ' ' ' 

0.0 20,0 40.0 60.0 80.0 I00.0 

Time 

Fig. 1. Energy decay as a function of time for different relaxation times T ranging from 
0.6 to 3.0: ([]) ~=0.6; ( 0 )  T=0.8; (A) z=  1.0; (A) r=2.0; (+ )  r=3.0. The exponential 
decay of energy demonstrates that the kinematic viscosity is constant for a given ~. The slope 
determines the kinematic viscosity. 
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t.5 

t.o 

0.5 

0.0 ' ' 

0.0 1.0 2.0 3.0 

Fig. 2. Comparison of the kinematic viscosity as a function of relaxation time: theoretical 
analysis (solid line) and numerical simulation (dots). The theoretical result is obtained using 
the standard Chapman-Enskog expansion. The measurements are obtained from the energy 
decay of the Beltrami flow. 

As discussed in the Section 2, the kinematic viscosity only depends on 
the relaxation time. By measuring the energy (or velocity) decay rate, we 
could accurately obtain the relation between the time relaxation parameter 
z and the kinematic viscosity. In Fig. 2, we present the theoretical predic- 
tion of viscosity and numerical measurements of the kinematic viscosity for 
the 14-direction model (dots). We see that when the z is smaller than 1, the 
theoretical results agree very well with actual numerical measurements (at 
least four significant figures compared with the analytic results). For larger 
values of z the error increases. This is possibly due to the fact that the 
relaxation characteristic time is comparable with the real macroscopic 
simulation time. Therefore, the Chapman-Enskog expansion will be valid 
only in the low-order approximation. 

As discussed in ref. 16, the linear stability of the single-time relaxation 
lattice Boltzmann method requires that z > 1/2. Therefore, we only make 
comparisons for z satisfing this condition. 

4.2. The Decaying Taylor-Green Vortex: Time-Dependent 
Properties and Vortex Structure 

Taylor-Green vortex flow and the time evolution of its statistical 
quantities have been extensively studied. (17-191 The Taylor-Green vortex 
has been of continuing interest as a numerical test not only because its flow 
pattern is simple, but also because it has a turbulent decay mechanism 
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which produces small eddies and which enhances dissipation by the 
stretching of vortex lines. 

To compare our lattice Boltzmann method, with the spectral method, 
we have to scale the kinetic equaton (7). That is, we have to use physical 
space and time units for the lattice Boltzmann calculations. To do this, we 
assume that one unit lattice length is equal to a real space distance A x  and 
a lattice time unit is equal to a real time At. Then the Navier~Stokes equa- 
tion (22) in lattice units can be rescaled using t* = t A t  and x *  = x Ax .  Here 
t is the lattice unit and t* is the physical unit; x is the lattice unit and x* 
is the physical unit. Assume that the velocity ratio between the lattice 
system and the real system is 2 = ULaE/Urea~ and the length scale ratio 
r I =-LLBE/Lreal. Then the time scale is t//2. The viscosity scale ratio is 2)/. 
Using these scalings, we can relate the lattice Boltzmann results to results 
from the spectral method. 

A spectral code for simulating three-dimensional isotropic turbulent 
flows in the periodic condition was developed. In Fourier space, the incom- 
pressible Navier-Stokes equation can be written as 

r 
= P(k) -  (v x O))k -- vk2vk (26) 

~t 

where the tensor P is the projection on the space of solenoidal fields, 
defined as 

k~kj 
P 0 ( k ) = 6 0  ' k 2 

A pseudospectral method was used to calculate the nonlinear term on the 
right-hand side of (26). The time integration utilized an Adams-Bashforth 
method with the initial step employing a modified Euler method. The 
viscosity term is exactly integrated. The complete time evolution of the 
spectral method can .written as follows: 

u 1 __V kn e x p ( - v k  2 A t )  

dt 

P(k) .  [ 3 ( v x e ) ) ~ , e x p ( - v k 2 A t ) - I  n -  = 5(v x co)k 1 e x p ( - 2 v k  2 A t ) ]  

In both the lattice Boltzmann and the spectral methods, a lattice 
size of 128 x 128 x 128 was used. We chose the following initial velocity 
distribution for the Taylor-Green vortex: 

Vx(X, O) = Vo cos x sin y cos z 

Vy(X, 0) = -Vo sin x cos y cos z (27) 

vz(x, 0) = 0 
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where v0 = 1 for the spectral method, which has a periodicity 2re in all 
directions, and v0 = 0.2 for lattice Boltzmann method with periodicity 128 
in all directions. Also, in the spectral simulation, we use a viscosity of 0.05 
for simulations of a Reynolds number of 200 and a viscosity of 0.0333 for 
simulations of a Reynolds number of 300. In the lattice Boltzmann simula- 
tion, we use the viscosities of 0.0203718 and 0.0135812 to obtain the corre- 
sponding Reynolds numbers. Using these parameters, one lattice time unit 
equals 0.01 unit of spectral simulation time. In Fig. 3, we plot the evolution 

Fig. 3. 

(a) 

2.0 
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1.0 

0.0 
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Enstrophy 12 versus time: (a) Re = 200; (b) Re = 300. Solid lines are results from the 
spectral method. The circles are lattice Boltzmann results. 

822/68/3-4-4 



394 Chen et  al. 

of the enstrophy, defined as (12) = (c~2), at (a) Re = 200 and (b) Re = 300 
for the time interval from 0 to 20, where ( . - . )  represents the spatial 
average. If there were no nonlinear terms, (12) would have a monotonic 
decay. The increase of the ( t2)  with time illustrates the existence of vortex 
stretching in the Taylor-Green vortex. We found that for both cases 
(Re=200 and Re=300), the lattice Boltzmann method and spectral 
method agree well in the initially increasing region when the nonlinear 
term dominates and at later times when the dissipation mechanism 
dominates. For the region near the peak of (12), there is about 5-10 % dif- 
ference between these two methods. This is probably due to the following 
two reasons: first, the spectral method is solving the exact incompressible 
Navier-Stokes equations directly, while the lattice Boltzmann method we 
have developed in this paper is actually solving the incompressible fluid 
limit of the compressible fluid flows at low Mach number. The com- 
pressible effect will be strongest when the nonlinear term and the dissipa- 
tion term are comparable. Second, the lattice Boltzmann scheme in the pre- 
sent paper is first order in time and second order in space. The existence 
of higher-order terms in the discrete approximation of the continuum ver- 
sion of the kinetic equation (14) may cause some numerical effects. From 
Figs. 3a and 3b we also found that the smaller Reynolds number gives 
better agreement between the spectral method and the lattice Boltzmann 
method. This is due to the nonlinear interaction term playing a more 
important role at high Reynolds numbers than at low Reynolds numbers. 
In Figs. 4 and 5 we present the time evolution of the relative energy change 
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o 1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0 

J , i i i 

5.0 10.0 15.0 20.0 

T ime  

Fig. 4. Rela t ive  energy as a funct ion of time. (1)y)/(Vx).2 2 . the dashed  line represents  the 
spectral  m e t h o d  and  the t r iangles  represent  the la t t ice  Bo l t zmann  results;  2 2 . (v,)/(vx). the solid 
line is the result  of the spect ra l  m e t h o d  and  the squares  indica te  lat t ice Bo l t zmann  results. 
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Fig. 5. Relative vorticity squared as a function of time. ((02}/(09~}: the dashed line 
represents spectral results and the triangles represent lattice Boltzanann results; (o~2>/(o9~}: 
the solid line represents spectral results and the squares represent lattice Boltzmann results. 

and the relative vorticity change: ~Vy) /~)x)  2 ~l)z)/~l)x) 2 (O)y)/<COx},2 2 and 
2 2 (c%}/((9x} for both the spectral simulations and the lattice Boltzmann 

calculations. We found that even though the relative energy and vorticity 
changes are very complicated with the evolution of time, the lattice 
Boltzmann scheme is capable of tracking the main properties of anisotropic 
energy dissipation and energy decay. Because of the symmetry of the initial 
velocity and vorticity in the x and y directions, the energy and enstrophy 
ratio of these two directions are constants. The initial velocity in the z 
direction is zero, but the nonlinear interaction term in Eq. (23) transfers 
energy from the x and y directions to the z direction. In contrast, the initial 
vorticity in the z direction is bigger than that in the other directions. With 
the evolution of time, the vorticity intensity distributions in all three 
directions are more isotropic and are almost equal when t = 20. 

In order to compare three-dimensional vortex structures, we plot in 
Fig. 6 velocity contours for a cross section ( z = 6 4 )  at times t = 4  and 
t = 10. At t = 4, the nonlinear interaction term dominates and the vortex 
structure is being stretched. The enstrophy is increasing. At t = 10, the main 
feature is dissipation. At this moment, the Taylor microscopic Reynolds 
number is quite small and the local vortex structure is slowly decaying. We 
see that the vortex structures generated by the lattice Boltzmann method 
agree with the spectral method results. We also found that the same vortex 
structures agree along different planes and at other times. 
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Fig. 6. Comparisons between the spectral method (SP) and the lattice Boltzmann (LB) 
simulations for the velocity contour lines at z = 64. The left plots are at t = 4 and the right 
plots are at t = 10. The similar velocity structures for different time steps can be clearly seen 
from the plots. This demonstrates that the two numerical schemes agree well not only 
globally, but also locally. 

4.3. Three-Dimensional  Isotropic Turbulence 

In this section, we present  briefly some compar i sons  for the s imula-  
t ions of  th ree -d imens iona l  i so t ropic  decay ing  turbulence  by the spectra l  
m e t h o d  and  the lat t ice Bo l t zmann  method .  The  system size used in this 

sect ion is 128 x 128 x 128 lat t ice units. 
The  ini t ial  value of the veloci ty v(k, 0) for the spectra l  code  is chosen 

f rom a Gauss i an  r a n d o m  distribution,~2~ which gives the energy spec t rum 

E(k) = 16(2/z)  m u~ k o 5k4 exp [ - 2 (k/ko)2 ] 
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where the energy spectrum is defined as 

E(k) = �89 ~ Iv(k')t 
s(k) 

The summation ~]s(k) extends over one shell in k space: k ~< ]k'l < k +  1. 
Here Uo = 1 is the initial rms velocity and the peak wavenumber is 
k0=4.75683. The viscosity of the system is 0.01189, corresponding to an 
initial Taylor microscopic Reynolds number R;. = 56. This has an eddy 
turnover time of 0.45. Because the lattice Boltzmann method solves the 
Navier-Stokes equations directly in physical space and in order to have a 
same initial velocity field, we transfer the velocity distribution in k space to 
physical space as an initial condition. 

In Fig. 7, we present two time steps ( t = 0  and t =  1) for the energy 
spectra in k space calculated from the spectral method (solid lines) and 
lattice Boltzmann method (diamonds). They agree very well at low wave- 
numbers. For high wavenumbers, there are some discrepancies between 
these two methods. This indicates that the current method accurately 
predicts an energy decay, but does not capture the high-order dissipation 
spectra (not shown in this paper). In a forthcoming paper, {zl) we will 

E, t = O  
m p E(k) 

�9 1 r 

0.01 

oooo _ I \ 
le-05 , , , ,, , o 
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Fig. 7. Energy spectra for three-dimensional decaying isotropic turbulence from the spectral 
method (solid lines) and the lattice Boltzmann method (diamonds) at times t = 0  and t = 1. 
The lattice Boltzmann method tracks the important properties of the spectrum in the low-k 
region. 
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present more detailed calculations for three-dimensional turbulent flows 
with additional comparisons between the spectral method and the lattice 
Boltzmann method. 

Another interesting case in turbulent flows is forced three-dimensional 
isotropic turbulence, which can also be simulated using the lattice 
Boltzmann method. A major challenge is the forcing technique. Usually, to 
have a stable spectrum in k space, in most spectral simulati0nss (=) a low 
wave constant force is used to maintain a constant energy. (23/ To obtain 
the same velocity distribution as the spectral method, one can transfer this 
forcing to x space by adding some low wave mode forcing ~ directly. 

5. CONCLUDING R E M A R K S  

In this paper, we have described two lattice Boltzmann computational 
models for three-dimensional fluid flows, based on the linearized 
Boltzmann approximation with a single time relaxation. We demonstrate 
that the new 14-direction lattice Boltzmann model requires less storage and 
computational time for solving real three-dimensional problems as com- 
pared with previous lattice Boltzmann methods. Since there is no isotropic 
single-speed lattice model in three dimensions which produces an isotropic 
stress tensor, a two-speed lattice must be used. It appears that the current 
14-direction lattice Boltzmann model has possibly the least number of 
directions required for three-dimensional isotropy. 

The present lattice Boltzmann model utilizes a new equilibrium dis- 
tribution function, which leads to a correct equation of state and which has 
a Galilean-invariant convection term. The numerically measured viscosity 
agrees well with the theoretical analysis of this model. In principle, the 
current model could give an arbitrarily small viscosity. Numerical tests 
show that the hydrodynamic system is stable for small viscosities. For a 
system with 128x 128x 128 lattice sites, we conclude from numerical 
experience that the smallest viscosity which could be used is about 0.001. 
This allows a Reynolds number of about 1000. For higher Reynolds 
numbers, the system energy oscillates. In this low-viscosity region, we are 
not convinced that the lattice Boltzmann scheme presented in this paper 
correctly models incompressible Navier-Stokes flows. Also, we are not sure 
at this moment of the exact cause of this instability. 

The lattice-Boltzmann simulations of several basic three-dimensional 
fluid flows and isotropic turbulence in a periodic geometry presented in this 
paper show good agreement with the spectral method for several tests, 
including the time evolution of energy, enstrophy decay, and vortex evolu- 
tion in space. The time evolution of spectra for three-dimensional isotropic 



Lattice Boltzmann Computational Fluid Dynamics 399 

fluid flows also compare well with spectral calculations. This demonstrates 
that the lattice Boltzmann method could be an alternative method for 
studying the isotropic turbulence. The simulation speed of the current lat- 
tice Boltzmann model is about 2.5 times faster than the spectral code we 
developed for the CM-2. We believe that our current CM-2 spectral code 
has almost obtained the maximum computer speed possible on the current 
CM-2. In our spectral code, about 98 % of the computational time is spent 
in the FFT. This part of the code is fully optimized. The current lattice 
Boltzmann code requires 18 three-dimensional arrays to store the particle 
distribution information and temporary arrays. The spectral code only 
requires about 12arrays. Hence, the spectral code requires 30% less 
memory. Thus, on one-quarter of a CM-2 (16k processors), the spectral 
code could run a system of 512 x 256 x 256, while the current Boltzmann 
method can only run 256 x 256 x 256. On the other hand, even though the 
spectral method could solve the three-dimensional problems with periodic 
geometry quite efficiently, spectral methods for complicated geometry 
have not yet been developed. Hence the lattice Boltzmann method is the 
only known method for solving problems such as flows through porous 
media.~7.8/ 

Although the present lattice Boltzmann method produces accurate 
results compared with spectral method, the lattice Boltzmann kinetic equa- 
tion is a numerical scheme of the first order in time and second order in 
space. This can be see from the discretized kinetic equation (14). The equa- 
tion we want to solve is the continuum version of the kinetic equation (14). 
In order to increase accuracy both in time and space, it would be desirable 
to develop a higher-order lattice Boltzmann scheme. 

We conclude that the lattice Boltzmann method could be an alter- 
native numerical method for solving the Navier-Stokes equations for three- 
dimensional problems in both periodic and complicated geometries. The 
parallel nature of the lattice Boltzmann method provides a competitive 
numerical technique for solving many problems in computational fluid 
dynamics utilizing parallel machines. 
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